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The stability of a horizontal layer of Maxwellian fluid heated from below is con- 
sidered. Critical Rayleigh numbers, wave-numbers, and frequencies for over- 
stability are determined for both free and rigid boundaries. Elasticity is found 
to destabilize the fluid, and the presence of rigid boundaries is found to be 
slightly stabilizing. 

1. Introduction 
The problem of the onset of thermal instability in a horizontal layer of viscous 

fluid heated from below has its origin in the experimental observations of Bhard  
(1900). The contributions of many who have subsequently studied this pheno- 
menon are discussed in detail in the monograph by Chandrasekhar (1961). For 
this problem the ‘principle of exchange of stabilities’ is valid, so the instability 
is manifested as a steady, cellular, convective motion. 

More recently, the effects of rotation of the fluid layer (Chandrasekhar 1953; 
Chandrasekhar & Elbert 1955), imposition of a magnetic field (Chandrasekhar 
1952, 1954) and mass diffusion (Stern 1960; Sani 1965) on the stability of 
thermally stratified fluids have been studied. In each of these cases it is found 
that in certain ranges of the governing parameters the fluid layer becomes over- 
stable, i.e. the thermal instability gives rise to an oscillatory convective motion. 
Overstability is possible in the presence of rotation or a magnetic field because 
they lend an elastic-like behaviour to the fluid thereby enabling it to sustain 
appropriate modes of wave propagation. It is therefore expected that a layer of 
viscoelastic fluid can become overstable due solely to heating from below. 

The purpose of the research reported here is to evaluate the conditions under 
which thermally induced overstability occurs in a viscoelastic fluid. The only 
previous work which deals directly with thermal instability of a viscoelastic fluid 
appears to be that of Herbert (1963) who studied plane Couette flow heated from 
below. He found that a finite elastic stress in the undisturbed state is necessary for 
elasticity to affect stability. This is true, however, only because a stationary mode 
of disturbance was assumed-the argument is not valid in the case of overstable 
modes. The closely related problem of overstability in isothermal cylindrical 
Couette flow has been considered by Beard, Davies & Walters (1966). Their 
investigation indicated that overstability is to be expected in moderately elastic 
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Maxwell fluids, with the critical Taylor number decreasing with increasing 
elasticity of the fluid. Several other papers which deal only with the stationary 
stability of viscoelastic cylindrical Couette flow are omitted from reference here; 
however, a comparative review of the literature on this problem may be found 
in the study by Miller (1967). 

2. Formulation 
Consider a layer of fluid confined between two horizontal planes separated by 

a distance d. The upper plane is maintained at  a temperature Tl which is lower 
than To, the temperature of the bottom plane. The fluid is assumed to have a 
viscoelastic nature described by the Maxwell constitutive relation. This rather 
idealized constitutive relation is deemed sufficient to reveal the basic effects of 
viscoelasticity on thermal instability, particularly in view of the extremely low 
shear rates involved and the linearization process utilized in the analysis. The 
equations which govern the behaviour of a Maxwell fluid are 

rij + to( 8, + vk 8,) rij = ,u( a, vi + ai v,) , (5) 

where vi is the velocity vector, 4 the body force per unit mass, T,, the stress 
tensor, K j  the rate of strain tensor, e the total energy per unit mass, qi the heat 
flux vector, T the temperature and rij the stress deviator qj - Pai,. The fluid 
density and viscosity are denoted by p and ,u respectively, and to is the Maxwell 
relaxation time. 

The initial quiescent state of the fluid is described by 

vi = 0, rii = 0, T = To+@x,, 

where p = (Tl - T,)/d. Since the body force and density field in the fluid are 
4: = (0, 0, - g )  and p = po[l -y(T - To)] respectively, thermally induced motion 
of the fluid is governed by the equations 

- 
(6) 

- - 

( a t + v j a j ) v k  = -Po1ak~ ' fh l ,gye+p, la , r jk ,  (7)  

(a,+vja,)e = q a i e ,  (8) 

aivj = 0, (9) 

which are derivable from the preceding equations with the Boussinesq approxi- 
mation and the assumption that viscous dissipation can be neglected. Here p' is 
the pressure relative to its hydrostatic value, (3 = T-To, y is the thermal ex- 
pansivity of the fluid, K is its thermal diffusivity, and h k  = (0, 0 , l ) .  

Considering, in the usual manner, a small perturbation about the initial 
configuration of the fluid, 

vk = vk, p = pi, e = + el, rik = Tjk ,  (10) 
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the linearized equations governing the perturbation quantities are readily found 
to be 

(11) 

a,v +hjVjp  = Ka,a,el (12) 

and a,V, = 0. (13) 

at vk = -pO1akp' + h, gye' + p p j r  T*k, 

Now the linearized form of the constitutive relation (5 )  can be substituted into 
( 1  1) after having operated on it by (1 + toat). If a,a, of the third component of the 
resulting equation is combined with a3 of the divergence of the same equation, 
the following relation is obtained : 

(14) 

where Vq = a, a, + a, a, and v is the kinematic viscosity. Introducing the following 
dimensionless variables : 

(1 +toat )  [atv2~,-g~vz,ef] = vv4v3, 

(15) 1 (x, Y, 2) = (x i /d ,  x2/d, x3/d),  

( U , V ,  W )  = ( V l d / K ,  V Z d / K ,  V 3 d / K ) ,  

7 = Kt/d2, 

T' = 8'/AT, 

the governing equations (14) and (8) can be written as 

(1 + I? a,) (P-la,V2w - RV2,T') = V4w (16) 

and (a7-V2)T' = -w,  (17) 

subject to w = aw1a.z = 8' = 0 at a rigid boundary, (18) 

or w = a2w/az2 = 8' = 0 at a free boundary. (19) 

Here P is the Prandtl number, v/K, R the Rayleigh number, gypd4 /v~  and 
I? = toK/d2 is an elastic parameter which may be interpreted as a Fourier number 
in terms of to. 

Following the usual approach, perturbations of the form 

w = W ( z )  exp [i(ax + by) + m] 

T' = T(z)  exp [i(ax + by)  + m] and 

are considered. Equations (16) and (1 7) then become 

(1 + ra) [ G P - ~ ( P -  w + RGT] = (02- q w, (20) 

[a- (P-a2)]T  = -w, (21) 

where ,a2 = as+ b2. Clearly, as I? -+ 0 the foregoing equations approach those 
governing the classical BBnard problem. 

3. Solution 
In this section solutions are presented for the cases of free and rigid boundaries. 

The former, although difficult to realize experimentally, is of importance since its 
exact solution is readily obtained. Furthermore, it is shown a posteriori that the 
critical Rayleigh numbers for the two cases differ by only a small amount. 
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3.1. Free bozcndaries 
If both boundaries are plane and free of viscous stresses, the problem is governed 
by (20) and (21) subject to the boundary conditions 

W = D2W = T = 0 a t  x = 0,l. (22) 

( 0 2 - ~ 2 ) ( 0 2 - ~ 2 - ~ ) [ ~ 2 - ~ 2 - ~ - 1 ( i + r ~ ) ~ ]  w = (i+rg);~a2w. (23) 

Examination of boundary conditions (22) and equation (23) indicates that the 

(24) 
required solution is W = Wosinnnz (n=1,2 ,3 ,  ...). 

The characteristic equation is therefore 

Equations (20) and (21) can readily be combined to yield 

(n%P+ aa) (nZn2+ a2+ a) [n2n2 + a2+ P-l( 1 + Fa) a] = - (1 + rcr) Ra2. (25) 
This equation can be rearranged as 

(n2n-2+a2)2+n+2+a2 Ra2 ] = 0, (26) 

which may be denoted symbolically as 

8 + A l @ + A 2 a + A 3  = 0. 

From the elementary theory of algebraic equations it is clear that a neutral 
oscillatory mode (i.e. (r = iaJ occurs if 

A,  > 0, A,A,-A3 = 0. 

The first condition simply implies that the critical Rayleigh number for stationary 
convection has not yet been attained, and the second condition yields the 
expression for the Rayleigh numbers a t  which marginally stable oscillatory 

The critical wave-number, obtained by minimizing R with respect to a, is given by 

a: = n 4 + + 1 + ~ ) + / r ,  (28) 
where consideration has been confined to the lowest-order mode, n = 1. The 
corresponding critical Rayleigh number is 

After lengthy but straightforward algebra the dimensionless frequency for neutral 
oscillatory modes is found to be 

The critical Rayleigh number, wave-number, and frequency for overstsbility 
are shown in figures 1, 2 and 3 for several values of I' and P. 
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FIGURE 1. Critical Rayleigh numbers for free boundaries. 
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FIGURE 3. Critical frequencies for free boundaries. 

It is obvious, on both physical and mathematical grounds, that for neutral 
stationary modes the solution is identical to that for an ordinary viscous fluid. 
Hence the critical Rsyleigh number and wave-number €or stationary convection 
s . ~ p  9 7 ~ 4 / A  rind 10 monnnt; r r .JT7 I-- L.. --n--.l,. r l L - - J - - - - l - L - . -  1 fin*\ 

3.2. Rigid boundaries 
When slip is not allowed at the boundaries the problem is governed by (20) and 
(21) subject to the conditions 

(31) W = D W = T = O  at z = O , 1 .  

This differentia1 system considered for marginally stable oscillatory modes, and 
subject to the physically imposed condition that R be real, constitutes a double 
eigenvalue problem whose exact solution entails a rather involved numerical 
procedure. An approximate solution to the problem can, however, be obtained 
through the use of a variational principle similar to that developed by Chandra- 
sekhar & Elbert (1955) for the solution of the B6nard problem subject to rofation. 

(32) = (D2 - a) Introducing the functions 
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and 
F = (D2-a2)  [D2- a*- P-l( 1 + Pa) a] W = [D2- a2- P-l( 1 + Fa) a] G, (33) 

equations (20) and (21) can be combined and written as 

(D2-a2-a)F = (1+rr )Ra2W,  (34) 

W = D W = F = O  at x = O , l .  (35) 

and conditions (31) yield 

Multiplication of (34) by F and integration over [0,1] yields, after suitable 
integrations by parts and utilization of (35), 

/ : { ( D F ) 2 + ( a 2 + a ) F 2 } d z  = - ( l+ra)  Ra2 /ol FWdz. ( 36) 

After employing (32), (33) and (34) and several integrations by parts, the follow- 
ing expression for R is obtained from (3G) : 

1; ((DF)2 + (a2 + G) P} dz 
- R =  (37) 

( 1 + Fa) a2s,' (G2 + P-l( 1 + Fa) a [(D W)2 + a2W2]} dz ' 

The condition that the variation SR, R being given by (37), vanish for all small 
variations SF compatible with the boundary conditions is 

( D 2 - a 2 - g ) F  = (1+I'a)Ra2W, 

which is precisely the governing differential equation (34). Hence equation (37) 
provides the basis for a variational procedure for solving the problem. 

For convenience, the origin of the co-ordinate system is translated to the mid- 
plane and (37) is rewritten in the form 

Based on experience with related problems (Chandrasekhar 1961) it  is anticipated 
that a value of R accurate to within a few percent can be obtained from (38), 
with F being approximated by only a single term satisfying (35). Since the most 
unstable mode for W is expected to be even, this approximate expression is 
taken to be 

(39) F = C O S ~ Z .  

Following the procedure developed by Chandrasekhar (1953) an expression for 
W is derived by solving the equation 

(~2--2)[02-a2-~-i(i+ra)a] w = cosnz, (40) 

obtained by substituting (39) into (33). The solution of this equation which 
vanishes along with its fist derivative at  the boundaries x = f $ is 

W = B, coshaz + B2 cash T ~ Z  + (COS ~ z ) / T ~ ,  (41) 
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where 
7 l  r 7r a B1 = --coshA, 3 - ---cash- r,A 2 ' - r 2 A  2 

in which, for the case of neutral stability, 

and 
a r  a r 
2 2 2 2 A = rl cosh - sinh 2 - a sinh- cosh 2.  

Evaluation of (38) in terms of the above expressions for F and W yields 

(n2+a2+iCT;,) 

A - 
1" ' 

(45) 

In order to determine a state of neutral stability P ,  r, a and ui were assigned 
fixed values and (46) was evaluated numerically. In  general this results in a com- 
plex value for R. Since R must be real in order to be physically meaningful, 
a numerical search was conducted to find the value of ui for which the imaginary 
part of R vanishes. When more than one such value was found, the one yielding 
the lowest real value of - R was, of course, considered. This procedure was then 
repeated for several values of a in order to trace the neutral curve. For each 
curve, the procedure was then repeated for several points in the neighbourhood 
of the critical point, with high accuracy being assured by forcing gi to converge 
to within 0.01 % of the value for which Im (R) = 0. After the number of significant 
figures was estimated by observing the convergence of R, a quadratic curve was 
fitted to the three points closest to the critical point, and its minimum was taken 
to represent R, and a,. Several critical Rayleigh numbers, wave-numbers and 
frequencies obtained in this manner for the case of rigid boundaries are given 
and compared with the corresponding values for free boundaries in table 1. 

RC UiC - 
P r Free Rigid 
0.1 
1.0 
1.0 

10 
10 

100 
100 

1000 
1000 

1.0 
0- 1 
1.0 
0.1 
1-0 
0.1 
1.0 
0.1 
1.0 

416.49 
740.78 

198.53 

123-03 

106.586 

43.386 

5.9442 

1.8689 

1.2205 

478.9 
877.8 

230.0 

130.1 

108.0 

51.58 

7,496 

2.203 

1.289 

3.2256 
4.1436 
3.2899 
5-8647 
3.7883 

5.7514 

9.9942 

10.016 

17.733 

3.483 
4.917 
3.696 
7.309 
4.724 

7-297 
11.96 

20.46 
12.76 

6.6088 
31.799 

8.004 
80.073 
17.368 

66-946 
350.00 

1830-3 
333.13 

1.647 

6.061 
15.07 

7668 
20.77 

83.45 
3858 

2052-0 
418-8 

TABLE 1. Comparison of the critical parameters for two free and two rigid boundaries 
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Inspection of this table indicates that the effect of rigid boundaries is slightly 
stabilizing, the maximum increase in R, due to their presence being only 26 % 
in this parameter range. R, for stationary stability, however, increases from 657.5 
to 1707.8 (see, for example, Chandrasekhar 1961). Because of the proximity of 
the curves for the two cases, these results have been tabulated rather than 
superimposed in figures 1, 2 and 3. 

4. Physical significance of the variational principle 
Chandrasekhar (1961) has shown that the variational principle for overstable 

convection under the effect of rotation is equivalent to the thermodynamic 

(47) 
relation 

where K E  is the kinetic energy, &' the rate of dissipation of energy by the viscous 
stresses, and 8 the rate of liberation of energy by the buoyancy forces in a layer 
of fluid of height d. The same statement can be made regarding the present 
problem. To show this, consider f is t  the second term of (47), 

a , ( m )  + i3 = 8, 

where all quantities are dimensional and the angular brackets indicate averaging 
over the horizontal plane. The shear stresses and velocity are related by (5), 
from which the expression 

can be obtained by linearizing and noting that acvi = 0 under the Boussinesq 
approximation. Equations (48) and (49) lead to 

vusaj(i +toa,)rji = pv,ajajvi (49) 

Introducing dimensioinless velocity profiles representing a simple cellular motion, 

(51) 

w = Wexp ( K a t / d 2 )  cos axcos by, 

u = - exp (Kat/d2) (aD W sin ax cos by)/a2, 

v = - exp ( ~ a t / d ~ )  (aD W cos ax sin by)/a2, 
and explicitly carrying out the averaging process, yields 

The other two terms, evaluated in the same manner, are found to be 

and 

(53) 

(54) 

which are analogous to those given by Chandrasekhar (1961), apart from 
differences in non-dimensionalization. 
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Substitution of (52), (53) and (54) into (47), algebraic rearrangement, and use 
of the relations G = (D2 - a2) W and 

leads to 

- R E  - 
(i+ra)~zJ - { ~ 2 + ~ - l ( i  + ~ v ) u [ ( D w ) ~ + c L ~ w ~ ] } ~ z  

0 

which is precisely the expression (37) for R, whose minimum was taken to repre- 
sent the critical state of neutral stability. If instability sets in as stationary con- 
vection, the principle reduces to that for the classical BBnard problem, whose 
significance is discussed by Chandrasekhar (1961). In  the overstable case of 
interest here (T = iai and the following principle can be stated: overstability 
will occur at the lowest possible adverse temperature gradient at  which the 
rate of change of kinetic energy can balance, in a synchronous manner, the 
periodically varying rates of energy dissipation by the shear stresses and energy 
release by the buoyancy force, assuming that stationary convection has not 
been initiated. 

5. Concluding remarks 
The results indicate that the elasticity of a Maxwellian fluid has a destabilizing 

influence on a liquid layer heated from below. This is true both in the sense that 
oscillatory convection can occur at a lower critical Rayleigh number than does 
stationary convection, and that R, for overstability decreases as increases. The 
presence of rigid boundaries has a small stabilizing influence on R,, a small 
effect on a,, and a somewhat larger effect on giC. 

To discern if this overstability should be observable under laboratory con- 
ditions, it is noted from figure 1 that r - 0.1 is the most favourable condition 
because most viscoelastic fluids have high Prandtl numbers. In  terms of the 
representative value K N cm2/sec, this condition implies d2 N 10-2t0. An 
experiment with a layer only 1 mm thick would therefore require a relaxation 
time of 1 see. Not only is this value quite large, but in general large relaxation 
times occur only in very viscous fluids. This in turn necessitates an unreasonably 
large AT to attain the required Rayleigh number. It therefore appears that an 
experimental investigation under normal laboratory conditions is not feasible. 
In  this regard, however, it should be noted that aqueous solutions of certain 
recently developed polymers have relatively large relaxation times and rather 
low viscosities. Perhaps further development of such polymers will make 
oscillatory convection of more practical concern. 

During the final stages of this investigation, a paper by Green (1968) reported 
another study of overstability in a viscoelastic fluid layer heated from below. 
His analysis, which is restricted to the case of free boundaries, is carried out in 
terms of a two time constant model due to Oldroyd. He also concludes that 
a simple experiment does not appear feasible with currently available fluids. 
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